r AD=A093 463 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/6 9/2
CHECKPOINTING AND ERROR RECOVERY IN DISTRIBUTED SYSTEMS»(U)
SEP 80 J A MCDERMID
UNCLASSIFIED RSRE=MEMO=3271 ORIC-BR=-76154 NL

END

oaTe
FULNED.

2-8.

priC

rrEFEEEE

e—
I————
er
r
e
F———
===
MM
o

123 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

\

ROYAL SIGNALS AND RADAR ESTABLISHMENT

TITLE: CKPOINTING

N

This paper discusses some of the problems of producing fault tolerant

Memorandum 3271

AND ;RROR RECOVERY IN DISTRIBUTED SYSTEMS

AUTHOMd /

— -
[5
Tt e

f/ B FE—ﬂir Mo-329*

g e -

distributed computer systems, in particular those of software error
recovery. It shows how checkpoints may be used in error recovery, it
defines the information that checkpoints must contain, and discusses

alternate strategies for checkpointing.

It describes models of error

recovery and extends an existing recovery protocol to cater for certain

types of checkpoint inconsistenciles.

The paper defines protocols for

systematically generating checkpoints so that they can be used by the

recovery protocols.

when they are no longer of us

growing indefinitely.

This memorandum is for advance

nes a protocol for discarding checkpoints
which prevents the set of checkpoints

The paper concludes by considering some of the
problems of implementing the protocols.

e ey
Accession For

NTIS GRARI R l
TTIiC TAB m |
Urnianuoy [‘
Tosi Aot o
- j— —_—— -.___..;!
B e
Distribntinng _
. Al . (odn3 .
__ i L AR AT

Dist | weial

|

information. It is not necessarily to be

regarded as a final or official statement by Procurement Executive, Ministry

of Defence

Controller HMSO London

yyroal

0) Introduction

0.0) Background

This paper discusses mechanisms which allow the software
in a distributed computer system to continue working despite
the failure of some of the hardware components of the system.
Many of the mechanisms would also be applicable to recovery
from software faults, but this aspect of fault tolerance will
not be discussed here. The background to this research is
described in [1].

The mechanisms described are presented in a general way as
they are not specific to one particular system. However in
order to elabarate on some of the points reference is made to
systems on which the author is working. Reference is made to
the FLEX computer system [2], a novel, high level language
oriented, multi computer system which incorporates a very high
speed packet switching communication system known as COMFLEX
{31. The mechanisms described are most likely to be
appropriate to large, real time, computer systems running a
static set of communicating processes. The process
organisation referred to in this connection is known as POSER
[4]. POSER enforces a message passing communication
discipline, and prohibits shared data areas, but is otherwise
similar to MASCOT ([5].

The mechanisms discussed aim to provide what is known as
backward error recovery (BER) {11, {6}. BER 1involves
forgetting work which may have been performed erroneously due
to a fault, and then repeating the work (hopefully correctly)
after the faulty component has been removed from the system.
With this form of error recovery some work may be repeated
but, in principle, none should be lost. It is beyond the scope

' of this paper to discuss the merits and demerits of ‘
alternative recovery strategies, but it is worth pointing out
that it is possible for an operating system to perform BER
"automatically”, thus providing a "recoverable wvirtual
machine"” to application processes. This will often be a
desirable way of building a system,

Definitions of important terms, such as fault, can be
found in [1) and [6]. The definitions used stem from those
given in [7] which regard 2 fault as the mechanistic cause of
an error, which is a detectable, incorrect, state and which,
if uncorrected, will lead to the failure of the system. We
cannot prevent faults and errors, but we do aim to prevent
them from leading to a system failure.

0.1) Requirements

The fundamental reason for checkpointing in a fault -
tolerant computer system is to preserve enough information
. about the execution of the system so that the system can be
restarted after a fault has occurred. In other words we are
storing the information necessary to enable backward error
recovery to be performed. The technique chosen for

checkpointing must satisfy a number of subsidiary
requirements, the most salient of which are:

1) The system must be restarted, from a globally
consistent state, with the minimum repetition of work
consistent with purging the fault and consequent errors
from the system.

2) The amount of information which has to be stored must
be minimised. This can be achieved by:

storing only "long - lived" data, and ensuring that
the amount of it stored is minimal;
minimising the frequency of checkpointing.

3) It must be possible to restart one part of the system
which has been affected by a fault without
unnecessarily disturbing the rest of the system.

These subsidiary requirements are not "absolute", in fact,
requirements one and two are to some extent contradictory, but
they must 1in some measure be met to ensure that the
checkpointing technique chosen 1is practicable. The other
constraints on checkpointing are described as appropriate
below.

0.2) Global Checkpoints

Perhaps the most obvious way of checkpointing is to take
copies of the state of the entire system from time to time.
This is often done in practice for long running programs on
mainframe computers, to reduce the amount of work lost in the
event of a system crash. The checkpointing technique is
normally to periodically halt the system and copy a complete
store image, or the part of it containing variables, onto a
more permanent medium such as a disc. This technique can, in
principle, be extended to a distributed computer system simply
by copying the store images of all the programs in the system
onto disc at the same time. We refer to this type of
checkpointing as global checkpointing. Obviously global
checkpointing violates our third requirement. Requirement one
can be met by checkpointing sufficiently frequently.
Requirement two is almost certainly not met, as copies of
nonessential (non long - lived) data will almost inevitably be
made.

There are practical problems associated with taking global
checkpoints in a distributed system. Primarily these are:

1) Synchronisation between the different parts of the system
when taking the checkpoint. This either requires
synchronised/central clocks and prearranged checkpointing
times, or a protocol to achieve synchronisation. The
clocking arrangements reduce the independence of the
processors and could introduce undesirable common mode
failures. The synchronisation protocol would be difficult
to implement and would be very costly in time,
particularly 1if the computer system was physically widely
distributed.

2) The whole system will stop for a period of time whilst the

checkpoint is being taken, which may well be unacceptable
in a real time system.

These problems render global checkpointing infeasible in a
practical distributed computer system, and it will not be
considered further.

0.3) Distributed Checkpointing

Any other checkpointing technique must involve copying the
states of individual components in the system from time to
time - this technique is known as distributed checkpointing.
These checkpoints will be taken largely independently, thus
the most fundamental difficulty is to ensure that we can
construct an internally consistent system state from these
component states. By internally consistent we mean that the
set of states is one which could validly have existed at some
time whilst the system was executing correctly.

That consistency is a problem may easily be shown by
example: consider the simple case of two processes running in
parallel, and passing messages to each other. The interactions
are shown (in the time domain) in figure 0.0, together with a
possible set of checkpoints. It is clear that any attempt to
establish a consistent pair of checkpoints for the two
processes will lead to the trivial pair (the initialisation
condition) being established, as no other pair could validly
have existed at the same time.

For distributed checkpointing to be wvaluable we must
ensure that consistent, and non - trivial, sets of states can
be established in error recovery. We can achieve this by
taking checkpoints at the times of interaction with other
components. This may result in more information being stored
than is necessary to provide the speed of recovery required by
a given application system, but it provides a good solution to
the third requirement as will be shown later. In the remainder
of this paper we shall assume that checkpoints are taken at
every interaction, unless otherwise stated.

We need to record information about causes and effects in
order to determine which set of checkpoints represents a
consistent system state. We will refer to this information as
causal relations or dependencies.

Note that the internal system state being consistent does
not imply that this state accurately reflects the outside
world (environment), indeed it 1is to be expected that a
discrepancy between the world and the systems view of it will
arise during error recovery.

Note also that, since we are dealing with distributed
systems, we must define the mechanisms for generating and
maintaining checkpoints, and for error recovery so that they
are capable of distributed execution. We must also assume that
subsets of the set of checkpoints may be stored in different
places and define our mechanisms accordingly.

et < s RO 14545 _.WMWMM@MM%mﬁ~ o e . - N N P

0.4) Choice of Components to Checkpoint

The components which we need to checkpoint are those which
we can replace or reallocate in order to overcome faults. We
. must ensure that the set of components which we can replace or
1 reallocate 1is such that the desired fault coverage is
; achieved. Obviously our decomposition must be applied
hierarchically, qoing down to the lowest level replaceable or
reallocatable module, but initially we will only consider the

highest levels of the hierarchy. ¢

At the highest 1level the hardware decomposes into the
major independent subsystems between which work can be
redistributed, and which are largely independent from the
point of view of faults. In a homogeneous multicomputer system
these subsystems would be the individual computers.

The software decomposes into units which can be
independently loaded and run, such as the processes in a POSER
system.

The hierarchic nature of systems is considered in more
detail in the next section as it significantly affects error
recovery alqorithms.

0.5) Hierarchic checkpoints and recovery

Our checkpointing and error recovery strategies must take
account of the hierarchic structure of systems. If an error
cannot be corrected at one level then the problem is passed
onto the parent component which will try to deal with it, and
so on. Thus the checkpoint for a particular component cannot
have any use outside the scope defined by 1its parent
component. We can thus see that in general we can, and indeed
should, store checkpoint information for one component so that
it is only accessible through its parent.

This strategy is satisfactory at all but the highest level
- i.e. that of the system itself. Here the parent component is
the environment, but it was one of our basic requirements that
the system should perform error recovery without outside
intervention [1], thus our general rule breaks down. The
practical solution to this problem is to keep multiple copies
of checkpoints within the system, and rely on the 1low
probability of common mode or simultaneous faults affecting
the separate copies to give us good error coverage.

This analysis also throws some light on how we should
design our recovery mechanisms, We say that the system has a
single fault, and single error at level N, if all faults and
errors at lower Jevels are 1included in one component at level
N. We can always find such a level, even if the whole system
has to be regarded as faulty (see fig. 0.1). It is generally .
much easier to perform recovery if we have to deal with only
one faulty component, rather than many. We combine recovery
mechanisms based on the assumption that only one component (at ‘

that level) is faulty, with the hierarchical strategy
described above. It 1is 1likely that the error recovery
mechanism will fail at levels where there are multiple errors,
but we can expect that recovery will be successful where only
one component is Faulty. Simplicity 1is a primary aim 1in
designing fault tolerance mechanisms, thus the use of a
hierarchical, single fault, single error, recovery strategy
seems desirable.

Unfortunately this strategy will not be adequate at the
system level. In order to increase the fault coverage we would
like to produce recovery mechanisms at this level which are
capable of handling multiple errors and possibly multiple
faults. This makes the highest level recovery algorithms more
complicated than those at lower levels.

In the software which comprises the user processes, the
hierarchical structure is applicable and of use. We can regard
each block in the program (assuming a block - structured HLL
is used}) as being one level 1in the hierarchy. Thus the
recovery information for one block in the language need have
no meaning outside the level immediately above (more strictly, ‘
the next one for which error handling mechansims are defined). j
We see therefore that the recovery information for one block A
need only be accessible through the block above, which defines :
how this information should be stored. Similarly we can sece
that error recovery should be performed on a block by block
basis, and that the aim of the error recovery mechanisms
should be to complete the action of the block correctly. This
recovery can be performed in many ways, and the means of
achieving it does not concern us here, It is worth noting,
however, that this type of recovery mechansim is widespread:
The Recovery Block technigue [8] developed at Newcastle
University implements exactly this form of hierarchical
recovery:; The exception handling mechanisms provided in the
FLEX instruction set will support this type of recovery; The
exception handling mechanisms provided in ADA are also of this
hierarchical nature.

0.6) Checkpoint Structures

The checkpoints for a component in a system comprises a
copy of the component state (i.e. sufficient information to
characterise the condition of the component at that time}
togeother with information defining the causal relations with
other component3, and a unigue identifier for the checkpoint.
The checkpoint structure is best illustrated by considering an
example. We describe here the checkpoints for POSER processes
and channels.

POSER processes and channels are defined so that a process
or channel activation corresponds to a procedure call,
execution and return. The interactions with other processes
and channels are by means of the parameters and results of the
procedur e which are propagated through the system by a message
passing method. Because of the way these processes interact a
checkpoint ts required immediately prior to each activation.

There is long lived data associated with each process and
channel which is preserved, unchanged, from one activation to
the next.

The checkpoints for each process and channel conceptually
comprise:

A copy of the 1long - 1lived data associated with the
process or channel (known as the Own Data).

A copy of all parameters.

Sequence number.

Dependency 1information.

The first two items are effectively the process or channel
state. The remaining information defines the causal
dependencies between this and the other components in the
system. It is convenient to show these dependencies
diagrammatically in order to describe the checkpoint
structures. Often the state information and that concerning
the actions on the states (the process and channel
activations) are shown independently, thus we obtain graphs
corresponding to individual activations as shown in fiqures
0.2 and 0.3.% These are elemental Occurrence Graphs as we
shall see in the next section.

i

N

e

1) Models of Error Recovery

{.0) Detinttion ol Occurrence Graphs

Occurrence Graphs (0.G.s) were developed to model the
dynamic behaviour of systems, and are described for systems 1in
which it is necessary to perform error recovery in [9]. O.G.s
are "generated" as the system executes and they bear a strong
relationship to Petri Nets [10] which can be used to model the
static structure of systems. We are interested in Occurrence
Graphs as they can be used to model the checkpoints which are
taken as the system executes, and the manipulation of
checkpoints during error recovery. We will initially describe
0.Gs in the abstract, then show how they map on to the
checkpoint structures described above.

Occurrence Graphs, as we use them, contain two node types:

Places - these represent the state of a system component
at a particular time.
Events - these represent the activities which occur in the

system (such as process activations) which cause changes
in component states.

Diagrammatically places are represented by circles and events
by vertical lines. The arcs of the graph are directed and
represent mechanistic causality (at this level of
abstraction), hence 0.G.s are acyclic and are often referred
to as DAGs - Directed Acyclic Graphs. The arcs are revpresented
diagrammatically by curved lines bearing arrows pointing from
the causal node to the caused node. We can now see that the
graphs in figures 0.2 and 0.3 are the O0.G.s wnich are
generated by a process activation and by a channel activation
respectively. Note that one event and a number of places
correspond to one checkpoint. The checkpoints are the
information which we store, and the 0.G. 1is simply a model of
these checkpoints and their causal relationships. However we
will tend to use both these terms to describe the stored
checkpoints, choosing the term which emphasises the attribute
in which we are interested at any given time.

Places can only have one incoming arc and one outgoing
arc, as only one event can generate a place (can have caused
the corresponding state) and only one (different) event can be
(partially) caused by it. Events can have multiple incoming
and multiple outgoing arcs (the event has been caused by the
conjunction of a number of states and causes changes to 23
number of states). The places hold enough information to allow
the event which they have caused to be repeated - e.g. to
allow POSER processes and channels to be restarted.

Merlin and Randell [9] introduce additional graph elements
and markings which make their model capable of describing
systems where not ali the component states are checkpointed
(At the level in the system with which we are concerned) and
qgive a general treatment of error recovery in distributed

systems. By considering only systems where every state 1is
checkpointed, such as is being done with the POSER
implementation on FLEX, we are able to employ a simpler model,
and to produce some more useful results. It 1s possible with
this simple model to extend Merlin and Randells analysis to
show the efficacy of our recovery algorithms.

1.1) Error Recovery - the Chase Protocols

Merlin and Randell [9] define a set of protocols which
they term the "Chase Protocols"”, and prove that these
guarantee error recovery, 1in the following sense. The
protocols construct an 0.G. which corresponds to a consistent
system state, from a graph which corresponds to a system state
which is inconsistent after an error or some errors have
occurred. The set of states defined by this new Occurrence
Graph may be used to restart the corresponding components
thereby providing error recovery.

The set of graph elements used in our model is a strict
subset of that used by Merlin and Randell (with some
relabelling) thus, because of the nature of the protcols and
the proof, their proof holds for our formalism also. However
the general model yields little information about the amount
of work which will be lost in error recovery, or even whether
or not there exists a non - trivial set of places to which we
can recover (known as a recovery line). Our simpler model
gives more information in both these areas, hence it is worth
pursuing the analysis here.

We must first introduce some simple notions of graph
marking and define our simplified Chase Protocol. When places
and events are generated (checkpoints are taken) they are
believed to be correct and are marked "live" and "active".
When a place has been consumed (has generated an event), or
when an event is complete (it has generated all the consequent
places) the appropriate graph element is marked "inactive". If
a place or event is believed to be errorneous, or it is to be
removed from the graph for some other reason (i.e. a
checkpoint is discarded), it is marked "dead". Dead graph
elements cannot become live, and are ignored. Live, linactive,
places may be returned to the active state to cause a "new"
event if the one which they originally caused becomes dead -
e.g9. the state contained in a process checkpoint may be used
to restart the appropriate process from a time before it was
believed to be faulty.

When a component 1s thought to be faulty the graph
elements which are believed to be erroneous (because they were
generated after the fault occurred) are marked invalid, then
will become dead. In practice we will only mark events
invalid; if a place 1s thought to be incorrect, then we must
repeat the event which gencrated it, hence we directly mark
the causal event invalid.

The Chase Protocols work by sending messages between those
parts of the system responsible for maintaining the 0.G. (e.g.

i

part of the kernel in a recoverable virtual machine). For the
sake of simplicity of expression the protocols are described
in somewhat loose terms, for example "messages sent down tne
incoming arcs to an event" is used for "the kernel responsible
for maintaining the event sends messages to those kernels
which are responsible for the places which are immediate
causes of the event" and so on. It is hoped that this lack of
pedantry clarifies, rather than obscures, the definition.

The algorithm may be stated as follows:

IF an event is marked invalid

THEN
the event sends fail messages on all its outgoing
arcs;
the event sends fail messages down 1its incoming
arcs;

the event 1is made dead
FI;

IF a live place receives a fail message on an outgoing arc
THEN
the place is made active
FI;

IF a live place receives a fail message on an incoming arc

THEN
the place sends a fail message on 1ts outgoing
arc;
the place is made dead
FI;

IF a live event receives a fail message on an incoming arc

THEN
the event sends fail messages on all its outgoing
arcs;
the event sends fail messages down its incoming
arcs (except that which sent the fail message);
the event becomes dead
FI;

The incoming arcs to dead elements are effectively removed so
it is unnecessary to define the algorithm for a dead qraph
element receiving 3 fail message.

We wish to know that this algorithm does yield a recovery
linc and that it does ensure that the requirements of section
0.1 are met. We approach this by attempting to find what work

will have to be "repeated" after executing this algorithm. Tne
work of the components which lead to the generation of tne now
deleted graph elements has effectively been discarded. This

work will not necessarily be repeated, as it may have taken
place crroneously anyway (in a sense, the control flow 1n the
system was wrong) . Thus we see that the concept of what work
is "repeated" is rather 111 - founded. The best we can do 1sg

10

define what work we did without deriving any benefit from it,
i.e. that corresponding to the deleted portion of the graph,
which we term the work lost.

It is obvious from the definition of tne algorithm that
the work lost is defined by the sot:

Ser = U S

0

where: e 1s the invalid element, Sfe) = {é}, and S;(e) is the
set of the elements of the 0.G. having an incoming arc in the
0.G from some element of S (e). This set represents the
work which e directly or indirectly caused i.e. that for which
it is a partial cause, which 1is what we would intuitively
expect. (S(e) - e is often described as the "causal future" of
e). This set is a strict subset of that derived by Merlin and
Randell. We may now define the recovery line as:

‘R (¢) = ﬁj ;Z;(e)
2o

where R;(e) is the set of places having ingoing arcs into
S (e). This means that we may restart the system by restarting
the component associated with the invalidated event using the
places which had arcs into that event 1in the original O.G.
(the other components will eventually be restarted 1if
appropriate as e was their partial cause).

Merlin and Randell demonstrate other properties of O.G.s
and the Chase Protocol, particulary concerning termination of
the algorithm and the operation of the algorithm 1in the
presence of multiple invalid elements. As 1indicated earlier
the proofs for the general 0.G. hold for our formalism (as 1%
is simply a special case). The proofs of the remaining
properties do not vyield any further information if they are
performed for our formalism so they will not be pursued
further. We do however quote, in a somewhat imprecise form,
two results which are important:

Termination of the algorithm - the nature of the algorithm
is such that, even if the parts of the system which are
not affected by the error are still running normally, the
set S(e) will eventually be complete (no longer growing)
provided that the fail messages propagate faster than new
graph elements are generated. Thus the algorithm will
effectively terminate and allow us to recover from the
effects of the error.

Multipic 1nvalild colements (implying multiple errors, and
perhaps faults) =~ 1n the presence of multiple invalid
elements 2 compcsite recovery line will be established,
and the work lost is the union of the sets corresponding
to cach of the elements when considered separately. All
the other properties are still preserved in the presence

11

of multiple errors.

Returning to our requirements in section 0.1 we see that
the amount of work lost (requirement one) is the theoretical
minimum and the set of states from which we are recovering is
consistent from the point of view of causality. Since the work
lost 1s only that for which the invalid element was a partial
cause, we can restart unconnected parts of the system
independently i.e. requirement three 1is met.

It is likely that in many cases less information could be
stored than this graph structure and algorithm requires - 1i.e.
we can afford to lose more than the theoretical minimum amount
of work without the system behaving in a manner which 1s
unacceptable. However if we interpret the second requirement
as having to be absoclutely constrained by the first, then we
can use the above analysis to define what constitutes the
"minimum amount of information". It should be noted that all
the proofs above rest implicitly on the assumption that the
graph represents all causal dependencies. Thus we can see that
it is essential ¢to produce checkpoints (generate places) on
the reception of all messages at all processes otherwise the
graph structure will violate this constraint. This
demonstrates the necessity of the checkpointing rule described
in section 0.3 and the proof of the prototcol shows that it 1is
optimal in terms of the work lost.

1.2) Restart Protocols

The Chase Protocols as described above give an elegant,
theoretical model of error recovery mechanisms in a
distributed system. However <certain implicit assumptions
contained in the protocols make them difficult to implement
directly. We now extend the Chase Protocls to produce what we
call the Restart Protocols which are intended to be more
readily implementable. We also show that the manipulations
which the Restart Protocols perform on the occurrence graph
are equivalent to those of the Chase Protocols.

One limitation of the Chase Protocols is that they assume
that the 0.G. is built correctly, which we cannot guarantee 1if
there are faults in the system. In particular different
components in the system may have a different view of the
system state, cither simply due to message delays, or, for
example, because an acknowledgement to a message gets lost.
The degree of discrepancy can be bounded (to a high degree of
confidence) if we check that the 0.G. is built consistent with
the static connectivity of the system, that is with the static
definition of the components and their interconnections. The
Restart Protocols are defined to operate with a graph built in
this manner.

We now define the "Restart Protocols" which will lead to
the desired recovery with an 0.G. built as described above:

IF an event is to be repeated (the system component
restarted)

fail messages are sent down all potential outgoing
arcs (lL.e. we use the static, not dynamic,
connectivity);
the event sends messages down all potential
incoming arcs;
the event is made dead

FI;

IF a live place receives a message from an event which it
caused
THEN
the place is made active
FI;

IF a live place receives a fail message from an event
which caused it
THEN
the place sends a fail message down 1its potential
outgoing arcs;
the place becomes dead
FI;

1F a live event receives a fail message from a place whicn

caused it
THEN

the event sends fail messages down all 1its
potential outgoing arcs;
the event sends messages down all potential
incoming arcs (except that which sent the fail
message) ;
the event becomes dead

FI;

This protocol obviously performs the equivalent graph
manipulations to the Chase Protocols since the dynamic
{actual) connectivity must be less than or equal to the static
(potential) connectivity, and it copes with all possible
inconsistencies in the graph (assuming that the checks 1in
graph construction prevent any structures which are impossible
given the static connectivity).

These protocols are obviously effective regardless of the
scale of the component which fails i.e. they work 1if simply
one process is restarted, if a whole processor is restarted or
even if the whole system is restarted after a major failure.
Since the Chase Protocols are -equivalent to the Restart
Protocols in terms of their graph manipulations, their
properties also apply to the Restart Protocols.

T — T

——— [nterprocess

B, message,
ESA O Checkpoint taken,
z .
g Only {A,BY are
ﬁb B, causally consistent.

. Time
5, |
o, b8,

Process A Process B

‘ . Fig. 00 Checkpoint Consistency.

System Level O
| Level 1
A B c

Levei 2

D&E are components of A,

A fault in G with errorsin G&I gives a single fault &error inC,

Faults and errors in D&H give a single fault & error inthe system,

“ el i 021 _Fauit Hierarchies.

Copies ot Copy of

Parameters Result

\

\
(&)

/
Copies of Own Data

Activation)

R0

)& A form the checkpoint

b

for one process activation.

Fig. 0.2 Process Checkpoint.

P,0,&A form the checkpoint tor an

incoming message, and O,& A, that

for an outgoing one.

Fig.0.3 Channel Checkpoint.

}
Lz:

2) The Generation and Maintenance of Checkpoints

2.0} Introduction

The above analysis derived several properties of O0.G.s
which we should also like our checkpoint structures to have.
We describe here techniques for generating checkpoint
. structures and maintaining them so that they do have these
properties. We first consider simplifications which can be
made to the graph without altering 1its properties, then we
describe protocols for reliably producing checkpoints and for
deleting checkpoints when they are of no further use. Finally
we consider where and how checkpoints should be stored.

Most of the mechanisms described here are generally
applicable, but they are presented in POSER terms as POSER
represents a convenient basis for description. The
optimisations described are specific to graphs generated by
the execution of a system composed of POSER processes and
channels.

2.1) Graph Optimisations

0.G.s which represent the execution of a system of POSER
processes and channels will have some structure, by virtue of
the form of the processes and channels. We can make use of
this structure to simplify the 0.G. and hence to reduce the
number and complexity of checkpoints which we have to store.
We perform these optimisations statically, so that we are able
to generate the optimised graph directly (rather than having
to simplify the full graph as we are building it).

The 0.G. corresponding to a single process activation is
shown in figure (.2. Because there are always multiple ‘
} in-paths to, and multiple out-paths from, an event it 1s not
possible to reduce (represent 1in a simpler fashicn) this
graph. In practice we can optimise this structure by i
collapsing the event onto the place for the Own Data, and
treating this pair as one object. This artifice reduces
transput overheads in generating checkpoints, and speeds up
some of the graph manipulations.

A graph showing some typical channel activations is shown
in figure 2.0. Let us consider the data associated with ,
message 1. Since the channel does not transform the data, it
is evident that the data in this message 1s stored many times: "
in places Pk, Rk+2, Ok+1l and Ok+2 (as Ok+1l and Ok+2 contain
copies of the lona 1lived data in the channel, which must

include the messaqges). We can obviously reduce the amount of
copying done by replacing the data part of place Rk+2 with a
reference to that in Pk. With a little more ingenuity we can
further reduce the number of copies by modifying Ok+1l and Ok+2 \
or Pk. This reduces the number of copies of the message to
. one, but atill leaves us with some undesirable causal

relationships. {

Since the message content is not modified on passage i

T ocrah e oroel, nor does the passage of the message

TSN St ot Sy 1 toe channel (cxcopo, peerhaps, to
S T o e rccoraitg of the channel states
shows cac gl beyeendenc s 0 whileln are unimportant. That thesc
dependencices s gls30 undecirable is shown by considering the

regencrat ion ot messaqges atter an error. 1f message one has to
he regencrated then mossige two will also be regenerated,
although thege messuges are strictly independent. Therefore we
woulid lik~ to roemove these causal dependencies, but this would
mean that the internal channel state is not recorded.

However if we can constrain the channel operation suitably
(c.g. to FIFQ) we can simply reconstruct the channel state by
re — inputting the messages., This will not in general yield
the same charnel state as had existed before the error, but
will produc one which 1¢ tunctionally equivalent - i.e. we
are applying ferward error recovery techniques. Thus we can
reduce the araph for the c¢hannel to one place per message
unless the <drcired mode of channel operation would make it
unacceptonl vy t - consumine to reconstruct the channel state
during error recovery.

The place representing the message in the channel contains
the same irformsriorn as the nlaces representing parameters to
the proc-sus, 0 we wmay further optimise the graph by
amalgamating the approreinte places. Thics can most readily be
accomplished by abolisning the places associated with the
process activation, and making the event refer directly to the
places for the channels.

For th. purpose of this discussion we assume that theso
graph optimisations have been made.

2.2) Checkopoint Generation

The prirary concern in generating checkpcints i35 to ensure
that they are produced consistently. It 1s obviously
impossible to cnsure absolute consistency when we are dealing
with distributed checkpointing in a system where errors may
occur (e.,0. mest3ges may Jo astray). What we are siming to do
is to redurce te n acceptable minimum the degree of
inconsistency which can occur. We thus define protocols for
the production of checkpoints which use handshaking technigues
to improve the probability ot error detection.

The protocel vxecuted for the channel is:

C 1nput
IF me oy rece ived
THEN
aenerate live, active checkpoint
C a0 ringle place C
1ckn~wledge messaqe;
Mike channel ~ligaible for schedulina

C outpuat o

”ll-!!!.lIlll'ﬁ—r— - AP sty

IF the channel has been run without an exception being

raised
THEN

deliver message;
wait for acknowledgement;
complete checkpoint for that message (make
inactive)

FI1;

These threads can not be run simultaneocusly, but there is no
restriction on the order in which they are run. These threads
effectively form a "shell” in which the channel runs. The most
likely inconsistencies (between different parts of the graph)
which can occur with this protocol are due to an
acknowledgement for a message going astray. This will result
in different parts of the O.G. giving incompatible histories
for the parts of the system which they represent., Clearly this
protocol must rely on a lower level set of protocols (for
ensuring reliable data transmission) to reduce the probability
of this occurring. It should be noted however that the Restart
Protocol is capable of ensuring that a consistent set of
checkpoints is reconstructed from a graph which is constructed
in this manner (see section 1.2).

The protocol for processes is similar, but it has to deal
with the multiple in and out paths which are associated with
the process. When the system 1is initialised a skeletal
checkpoint consisting of a place for the intialisation Own
Data, and an empty data structure for holding the event and
its links to the casusal places is created. When messages
arrive these 1links are filled in until the process is
schedulable. A similar process occurs after the process has
run building up the links to the caused places. The protocol
is:

C input C
WHILE NOT eligible for scheduling
DO
IF message received
THEN
add link to causal channel checkpoint;
acknowledge message
F1
OD;

C ouvtput C
IF process run without exception being raised
THEN
create skeletal (live and active) checkpoint for
next activation
WHILE messages to send
DO
deliver message;
await acknowledgement;
add link to caused channel checkpoint
oD;
complete checkpoint (make inactive)

16

’I—iiiﬁﬁllll-lllF“fF51

ELSE
perform error recovery
FI;

These threads will be run alternately unless the process
does not terminate normally, but there is scope for speeding
up the operation by use of parallel processing. As for the
channel this protocol is essentially the shell in which the
process runs. It should be clear from considering the sequence
of operations concerned in creating a checkpoint how the
protocols for the channel and process interact, and that they
do produce checkpoint structures which are equivalent to the
0.Gs described above.

2.3) Maintenance of Checkpoints

2.3.0) Principles

If nothing were done to prevent it, 0.G.s would continue
to grow indefinitely (assuming that the system continued to
run) . Thus one primary aim of checkpoint maintenance 1is to
ensure that the set of checkpoints stored in the system does
not grow too large (for the storage space available for them).
This can, in principle, be achieved by destroying checkpoints
(removing places and events from the 0.G.) when they are no
longer reguired - the difficulty is deciding when they are no
longer required. The problem is twofold. First, no matter how
cautious one 1s about removing checkpoints, one can always
synthesize an error which is sufficiently devious, or latent,
that one of the deleted checkpoints was essential for
recovery. Hence we need to establish a criterion for removing
checkpoints which will be "reasonably good", although we know
that it is not i{ailsafe. 1In section 2.3.1 we consider how the
criterion for being deleted varies with assumptions about
error latency. fecond, it is difficult tc devise algorithms
for removing checkpoints which are amenable to distributed
execution (although it 1is relatively easy to do so for
centralised cxecution).

Directly removing checkpoints is not the only ploy for
preventing their indefinite arowth. An attractive alternative
is to collapse the checkpoints 1into "larger" ones, and to
modify their connectivity so that their causal relationships
are preserved. The checkpoints so0 created correspond to larger
(conceptual) components than the processes and channels. The
collapsing will, in general, allow some checkpoints to be
removed. This technique can be applied repeatedly, thereby
continually thinning the graph. This hierarchical structuring
of the graph corresponds quite closely to the i1dea of "boxes"
introduced in [11]. This method alone, or a combination of the
two methods, would yield fine error recovery from small and
recent faults, and more gross recovery from larger and more
highly latent faults. With this method the difficulty arises
in finding an algorithm for collapsing the checkpoints 1in &
causally consistent way, which is suitable for distributed
execution.

17

The second primary aim of checkpoint maintenance is to
preserve those checkpoints which are still required. This
aspect of maintenance involves ensuring that the multiple
copies of the checkpoints are built consistently (with each
other), and recovering from the corruption of, or loss of, one
of the copies of the checkpeoints.

The fundamental mechanism for ensuring consistent building
of checkpoints 1is to serialise the critical operations (e.qg.
irrevocably changing pointers) so that, at any one time, at
least two of the three copies agree. This ensures that
recovery from a fault, occurring at any time, 1is
straightforward.

The recovery from corruption to, or loss of, a copy of the
checkpoints involves building a new copy of the remaining,
intact sets of checkpoints. Since the sets of checkpoints are
always growing, care must be taken to see that the recovery
terminates, and that the new copy does become properly
integrated with the old ones,. This could, most simply, be
achieved by stopping the appropiate part of the application
system until the new copy was made. This will not normally be

acceptable due to the cessation in service it would cause. A
more practical algorithm is to build a copy until it 1s
"nearly complete”, then to integrate completion with one of
the critical operations. This solution would 1lead to a

relatively short break in service.

In practice, it the number of checkpoints kept for any one
process is small, acceptable recovery times may be achlieved
simply by creating a new set of checkpoints (from scratch) -
this set will very soon be in step with the other two. This
algorithm is by far the most desirable (being the simplest) if
it is acceptable.

2.3.1) Deletion of Checkpoints

we will now consider the deletion of checkpoints 1n more
detail. We start by making some unrealistically restrictive
assumptions about error latency, then proceed to derive
algorithms which are satisfoctory under more reasonable
restrictions,

Under the assumptions:

1) The 0.G. 16 constructed consistently - 1l.e. we can
quarantee that no messages get lost.

2) A1l faults are detected (by means of the errors which they
qenerate) within the process (channel) activation in whicn
they occurred.

we can delete checkpoints as soon as they become 1nactive
{strictly this marking 1s no 1longer necessary). This is
possible because we know that, when we make a checkpoint
inactive, the event associated with that checkpoint, and all
the causal events, have been completed correctlz. Thus we
cannot wish to repeat the event, hence we no longer require

18

the checkpoint. With these assumptions the maintenance of the
checkpoints becomes essentially trivial.

If one simply removes either of these two constraints then
the potential error latency ceases to be bounded, hence we
need to relax these assumptions in a more subtle way. We can
not realistically assume that errors will be detected within
the process activation in which they arose, but it is quite
reasonable to assume that a large proportion of the errors
will be detected by processes which receive the outputs of the
erroneous process, either by input validity checks, or by the
fact that they fail in execution. Thus we can be reasonably
sure that a process has been executed correctly, (and hence we
no longer need to keep its checkpoints), if all the processes
which use its outputs have run successfully.

Obviously this algorithm 1is not fail safe, but it is
practicable. The protocol can be extended to cater for more
highly latent errors by increasing the length of the chain of
processes (N) which have to be executed before we decide that
the causal process has been run correctly. 1t is difficult to
know how the error coverage varies with N, but the cost of
executing the protocol will increase more than linearly with
N. Intuitively the best approach is to keep N small (or even
unity) and to back up the restart protocol with a cold restart
mechanism.

For N = 1 the protocol is:

C for a process C
IF the process is executed without error
THEN
send thank you messages down all incoming arcs to
the corresponding event
ELSE
perform error recovery
FIi:

REPEAT
receive thank you message
UNTIL
message received from all outgoing arcs
TAEPER; C closing delimiter for REPEAT C

delete process checkpoint and corresponding channel
checkpoints;

C for a channel C
pass thank you messages

This protocol may be extended for N > 1, by including N in
the message, decrementing it on passing "through" each
process, and only acting on the message when N is reduced to

1. No further modifications are required. This protocol
implicitly relies on the ability to perform error recovery to
correct inconsistencies in the 0.G. without re - executing
processes.

19

2.3.2) Collapsing Graphs

The graph collapsing (or reductions) which we have to
perform are identical (in purely graph theoretic terms) to
those used in program analysis [12}. These algorithms are
normally performed in a centralised way, but could probably be
adapted for distributed execution. It is intended that these
algorithms will be studied as they could yield very efficient
and elegant implementations of the checkpointing protocols.
However this problem has not yet been tackled, so it will not
be pursued further here.

2.4) Checkpoint Storage

The arguments and analysis developed above have given us
enough information to allow us to decide where the different
classes of checkpoint should be stored. We assume here that
processes and channels will be written in a block structured
HLL, and that a dynamic storage allocation mechanism (a
"heap") 1is available.

Checkpoints corresponding to program blocks within the
user processes do not need to have any meaning outside the
next superior block for which an exception handler Iis
supplied. It is intended that processes will be restarted from
the beginning of an activation in the event of errors which
effect a complete computer, and which therefore reguire
processes to be reloaded on another machine in the process of
error recovery. Thus these checkpoints need not be stored
outside the machine on which the process (or channel) is
running. The checkpoints may therefore be stored on the heap
with references to them in the appropriate stack frame. The
scope rules are such that the checkpoints will be put to
garbage at the appropriate time. Obviously other
implementations which are functionally equivalent maybe
devised. This destruction of checkpoints is equivalent to a
very simple reduction of the O0.G. - simply collapsing the
lowest level of detail into one node at the level above. The
mechanisms as described here correspond quite closely to thcse
used in early implementations of Recovery Blocks; ~ a later
implementation makes use of hardware assistance [12], [13].

The process and channel 1level checkpoints must be
accessible from machines other than those on which the process
{or channel) was originally running, in order that their worx

may be continued elsewhere if necessary. This information 1is
the highest level recovery information in the system and must
be replicated as explained above. It is essential therefore,

that multiple copies of this information be stored on globally
(assuming a homogeneous system) accessible, semi - permanent
media. One way of doing this is to use three (or more)
physically separate magnetic discs, each containing a complete
set of checkpoints. The discs must be accessible from any
computer in the system. In FLEX this would be achieved by
having three separable filestores on separate discs. COMFLEX
would ensure the global accessibility of the checkpoints. The

et e

roots for these checkpoints would have to be held on disc in
known, named, locations so that they could be found even after
a major crash. The “critical operations" alluded to above
would primarily be manipulations to these roots. A crash
whilst they were being changed could lead to (one copy of the)
checkpoints being irrecoverably lost, hence the need for the
serialisation of critical operations.

2.5) Practical Tmplementation of the Protocols

The above descriptions have not defined (in much detail)
the interactions between the protocols, and other problems of
their implementation. It is believed that these protocols can
be succesfully integrated to form an "error recovery kernel"
(for want of a better term) for use in a distributed computer
system. Most of the protocols can be integrated simply by
putting them in a hierarchy inside a shell in which the
process or channel runs. The protocols for generating and
removing checkpoints are, however, strongly bound up with the
simple data transport mechanisms and require careful
consideration. Implicit here also are the "timeouts" necessary
to detect that an expected message has not arrived which have
to integrated into the error handling scheme.

These problems of implementation are being tackled by
building an experimental system on a multi - computer
simulation running on RSREs prototype FLEX system. If this
experiment proves successful (within the capability of a
simulation to validate these protocols) then the experiment
will be extended to a more practical implementation. At this
stage it should be possible to see the difficulties introduced
by true (rather than simulated) parallelism, and the handling
of real peripherals.

3) Conclusions

This report has described a number of protocols which are
useful in the provision of error recovery mechanisms 1in
distributed systems. The protocols are intended to be fairly
readily 1mplementable, although it is unlikely that they could
be implemented solely from the information presented here due
to the lack of detail. Also because of the way in which the
protocols interact their form, as implemented, differs
significantly from the abstract form shown here.

The protocols as described do not cater for certain
eventualities, such as the creation and deletion of processes.
The theoretical foundation, based on the Occurrence Graphs, is
rich enough to describe systems which allow processes to be
created and destroyed, and there seems to be no theoretical
difficulty in extending the protocols to deal with this. Such
extensions would, however, require some care in implementation
if problems of resource allocation etc. are to be avoided. The
protocols are, however, quite adequate for essentallly static
systems such as those built using MASCOT or POSER. ;

These protocols are not sufficient in themselves to allow
a fault tolerant computer system to be produced. In particular
mechanisms for fault and error detection, and for the
reallocation of resources (fault recovery) must be provided.
Little has been said about these mechanisms as they depend
very heavily on the hardware architecture and on the
application system.

A recovery Kkernel must be built on an almost "“"bare"
machine if it is to be really effective, which poses certain
problems. Tt is dubious that an efficient operating system "
could readily be built within the restrictive POSER
discipline. Thus we must either run application programs
fairly directly on the kernel and tolerate the limitations {
which this imposes, or do a considerable amount of work to
build an operating system which incorporates fairly explicit
recovery mechanisms.

The protocols for generation and maintenance of the
checkpoints have been implemented on the simulation, and the

. recovery mechanisms will shortly be added. Some effort will
g then be spent in evaluating these mechanisms with a "typical"
‘ apllication system. Further reports will present the results

of the evaluation.

4) References

(1}

[21

(3]

(41

[5]

(6]

(71

{8]

(9]

[10]

(11

[12]

(13]

f14]

“"Fault Tolerant Computing", J A McDermid, RSRE Memo.
3197, 1979.

"An Intrduction to the FLEX Computer System”", J M
Foster, I F Currie, C I Moir, J A McDermid, P W
Edwards, J D Morison, C H Pygott, RSRE Report 79016,
1979.

"COMFLEX - a high speed packet switch for inter -
computer communicarion®", J A McDermid, Proc. of
Eurocomp 78, 1978.

"POSER -~ a Process Organisation to Simplify Error
Recovery”, J A McDermid, RSRE Memo. 3249, 1980.

"MASCOT - A Modular Approach to Software Constrcution
Operation and Test", RRE Tech., Note 778, H R Simpson, K
Jackson, 1975.

"Reliable Computing Systems", B Randell, P C L2e, P A
Treleaven, in Lecture Notes in Computer Science No. 60:
Operating Systems - An Advanced Course, G Goos, J
Hartmanis Eds., Springer Verlag, 1978.

"Software Reliability: The role of programmed exception
handling", M P Melliar -Smith, B Randell, Proc. ACM
Conf. on Language Design for reliable software, 1977.

"Recovery Blocks in action: a system supporting high
reliability", T Anderson, P Kerr, Proc. Int. Conf. on
Software Engineering, 1976.

"Consistent State Restoration in Distributed Systems",
P M Merlin, B Randell, Report No. TR113, Computer
Lboratory, University of Newcastle upon Tyne, 1977.

"General Net Theory", C A Petri, 1in Computing System
Design, University of Newcastle upon Tyne, 1977.

"A Formal Model of Atomicity in Asynchronous Systems",
E Best, B Randell, Report No. TR 130, Computer
Laboratory, University of Newcastle upon Tyne, 1978.

"Graph Theory leads to Program Visibility", B D
Bramson, S J Goodenough, RSRE Report 80004 (to appear).

"Concurrent Pascal with backward error recovery:
Inplementation”, S K Shrivastava, Software Practice and
Experience Vol. 9, No. 12, 1979.

"N recovery cache for the PDP11", P A Lee, N Ghani, K
Heron, Report No. TR134, Computer Lboratory, University
of Newcastle upon Tyne, 1979.

23

Message! in

Message 2 in

Fig. 20 Typical Channel Activations,

Message 1 out

